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The article is concerned with the study of the effect of E. S. Asmolov's corrections to Saffman's lift force 
for the wall vicinity and a nonzero ratio of Reynolds numbers. It is shown in what way these corrections 
change the particle paths in a Couette layer and the conditions of deposition. 

A free-rotating particle moving in a shear flow gives rise to a transverse (lift) force. In [1 ] Saffman suggests 
the following formula for the linear profile of gas velocity: 

PS = 0"25Cpg 32 (Ug - Up) (vOUg/OY) 1/2 . (1) 

At small Reynolds numbers, Rev << 1, Rei  << 1 and at their ratio A - Rev/Rek Lr2 << 1, C = 6.46 = const. 

E. S. Asmolov [2, 3 ] considers the more-general case of an arbitrary value of A as well as the influence of 

the wall vicinity on the coefficient C. In the general case C = C(A, 7). In [3 ] an approximation of the coefficient 
C for the case r/--, oo : C(A, oo) = 6.46fi (A) was obtained: 

fl  (A) = 1/(1 + 0.581A 2 - 0.439A 3 + 0.203A4), (2) 

i.e., at A = 0 far from the wall C = 6.46. 

The dependence of the coefficient C on the dimensionless distance to the wall is more complex; in [2 ] it 

is presented only in graphical form, thus making its use in calculations difficult. We introduce the function 

f2(A, ~1) = C(A, r/)/C(A, oo). According to the results of [2, 3 ], it can be approximated in a first approximation by 
the following exponential function: 

f2 ( a ,  r/) = 1 - exp ( -  k ( r / -  r/0)). (3) 

Relation (3) accounts for the fact that the lift force reverses its direction when r/ < r/o. In this case, both 7?0 and k 

depend on the value of A. According to the results of [2 ], in a first approximation for 0 < A _< 2 these dependences 
can be approximated by the curves 

7/0 = 0.60A I /2  k =.0.439 + 0.093A 2 + 0.047A 3 
, (4) 

The function C -- 6.46flf2 derived in this way was used in calculations. 

Since the Reynolds numbers Rev are rather small, we can disregard the rotation of a particle and the 

Magnus lift force exerted on it [4] and use the resistance force in Stokesian form: P# -- 3:rOvpe,(Vg - Vp). 

We will consider a Couette laminar gas layer in which the x axis is directed along a solid wall and the y 

axis along the normal to it. The equations of panicle motion in projections on these axes have the following form: 

dUp 3 c l /z  _% 
dt = fl ( U g -  UP ) + gx' b = ~ ppO 

dt = - f lVP + b ( U g -  Up) _ ~  I /2  
or + gy (5) 
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Fig. 1. Broken lines for determining the conditions for a particle to reach the 

wall at Stk - 1: 1) ar -- 0.04; 2) 0.25; 3) 0.5; 4) 1; 5) 4; 6) 9; 7) 25. Dashed 

straight line, a t ~ 0. 

Let us now pass to dimensionless variables in system of Eqs. (5), having selected the following quantities 

as scales: U~. the gas velocity at the outer boundary of the layer and D the thickness of the Couette layer 

k = ( y - u ) / S t k + ~ x ,  i , = - v / S t k + a ( y - u ) + ~ y ,  ~ i=giD/U2~ �9 (6) 

It is taken into account in Eqs. (6) that the dimensionless gas velocity in the layer ug = y, a - a~f, f = 

fl/'2. Setting [ = 1, it is possible to find an analytical solution of (6) [5 ]. We also assume that the values of ~i are 

rather small and can be neglected. Then, under the initial conditions Y0 = 1, uo >-- 0, and v0 < 0 the second of Eqs. 

(6) has the following solution (ar ~ 1/Stk2): 

v = S  t e x p ( 2 f f ) + S  2exp(22r ) ,  2 l = - l / S t k - v ~ a ~ ,  2 2 = -  1 / S t k - x / a ~ ,  (7) 

y = [exp (Aft) - 11 S l / ; q  + [exp (22z) - 1 ] $ 2 / 2  2 + 1 , (8) 

At a~ -- 1 /Stk  z 

S 1 = 0 . 5  Iv o - ( 1 - u o ) ~ / a r  ] ,  S 2 = 0 . 5 [ v  o + ( 1 - u o ) ~ / a ~  ] .  

y = [1 - exp ( -  2r/Stk) ] S 1 S tk /2  + S2r + 1. (9) 

In [5 ] the conditions were investigated under which a particle that penetrated through the upper boundary 

into the Couette layer could reach the wall. The results of [5 ], obtained for the case of f - -  1 (a -- a t -- const), will 

be given here in a form more convenient for application. 
Let ar < 1/Stk 2, then with r -~ oo the ordinate of the particle is 

y .  = 1 - S1/ ;~  l - S Z / 2  z = (acu o - v0/Stk - 1 / S t k Z ) / ( a ~  - 1/Stk2) �9 (10) 

The particle will reach the wall if y. ___ 0; according to Eq. (10), this condition will be fulfilled at 

v o _ v I = aCUo S t k -  1 /S tk .  (11) 

The particle will not leave the layer if 0 < y. < 1; according to Eq. (10), this corresponds to Vl < vo < v2 -- 

ar  When vo >- v2, the particle will leave the layer through the upper boundary.  
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Fig. 2. Particle paths in a Couette layer at a~ = 0.1; ~ =  0.05; Stk = 1; u0 = 1: 

1) v 0 = - 1 ;  2) v 0 = -0 .9 ;  3) v0 = -0 .7 .  Dashed lines, calculation at f =  I. 

Let a t >_ 1/Stk  2, then •2 >- 0, and the particle will reach the wall when $2 < 0; according to Eq. (10), this 

corresponds to the condition 

v 0 < v  3 = ~ / a  t (u 0 -  1). (12) 

We verify now whether the particle will reach the wall when ar >__ 1/Stk 2 and $2 = 0. Then vo = v3, y. --- 1-S1/22 ,  

whence y. < 0 when 

v o _< - 2 /S tk  - ~ / a  t (u o + 1). (13) 

Substituting vo = v3 into Eq. (13), we obtain uo -< - 1 / ( v ~ S t k ) .  Since we confine ourselves to the initial condition 

u 0 ___ 0, then the rigorous inequality (12) is the condition for reaching the wall when a t >__ 1/Stk  2. 

Figure 1 presents the straight lines vo = Vl (uo) and vo = va(vo) plotted at different values of a t. The condition 

for a particle to reach the wall is the position of the point M(uo,  uo) below the straight line plotted for the 

corresponding parameter a t (a~ > 1/Stk 2, including the straight line). If the initial longitudinal velocity is larger 

than the value of uo, which corresponds to the intersection of the straight line vo = vl (uo) or vo = va(uo) with the 

axis vo -- 0, then the condition for reaching the wall is V0 < 0, i.e., the limiting lines are the broken lines in Fig. 

1. It should be noted that with a t --, 0 the slope of the limiting straight lines decreases, and they tend to occupy 

the position of the dashed straight line. 

System of Eqs. (6) with account for the func~i6n C(A,  r l) was solved numerically by the Runge-Kutta  

method. In solving it, we took into consideration that a~ = 3.08;t/(~'Red) re, Stk = ~Red / (18~) ,  ~/= yRed ~z , and A 

= vrRed ~2 . Therefore, in calculations we should specify three determining parameters of the five constant quantities: 

Red, a~, ~', Stk, and ;t. 
Figure 2 presents the paths of particles at different initial transverse velocities vo. It is evident that allowance 

for the corrections made by E. S. Asmolov (solid curves) leads to a change in the calculation results (dashed curves 

refer to calculations at C = 6.46). However, in the case of inertial precipitation of particles (curves 1) the differences 

are insignificant. Therefore, the results of calculations under the flow conditions of [6, 7 ] do not change much if 

the function C(A,  rl) is taken into account. But curves 2 differ qualitatively, i.e., calculations without allowance for 
the corrections show that the particle reaches the wall, while those with corrections show that the particle remains 

in the layer. Obviously, E. S. Asmolov's corrections should be taken into account when determining the conditions 
for a particle to reach the wall. 

Taking into account the function C(A,  r 1) at different values of a~ and ~', we determined numerically the 

values of the initial transverse velocity v~ such that the particle could reach the wall when v 0 < v~. It is established 

that in a wide range of parameters a~ and ~" the value of v~ differs from - 1 / S t k  only by a small positive value of 
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Fig. 3. Variation of E. S. Asmolov's corrections across a Couette layer at 3"= 

0.05; Stk = l; u0 = l; v 0 -  -1 :  1) ar = 0.02; 2) 0.04. Solid lines refer t o f ,  

dashed lines refer to fl ,  dashed-dotted lines refer to f2. 

e, i.e., v~ -- - 1 / S t k + e .  In order to find the reason for this, we consider the change in the functions f l ,  f2, f across 
the layer. 

Figure 3 shows the change in fl ,  f2, [ at two values of a~. Fa r  from the wail, the value off1 is equal to unity; 

it decreases in approaching the wall and then changes sign. Conversely, the value of f2 increases to unity near the 

wall. This is a consequence of the decrease in Vr near the wall and, consequently, in A. Having a maximum, the 

function f remains much smaller than unity in absolute value. Moreover, as czr increases, the value of the maximum 

decreases, so that the quantity a =far is always of the order of 10 -3. This corresponds to a limiting line that differs 

little from the dashed line in Fig. I; therefore, the value of v~Stk is close to unity. 

N O T A T I O N  

x = X / D ,  y = Y/D,  dimensionless longitudinal and transverse coordinates; u = UplU~,, v = VplU**, 

dimensionless projections of particle velocity on the longitudinal and transverse axes; �9 = tU~ /D ,  dimensionless 

time; Stk = Uo~c52/(18v2D), Stokes number, 2 = p g / p p ,  v,  coefficient of the gas kinematic viscosity, c~, particle 

diameter; 3"= J / D ;  pg, pp, densities of the gas and particle material; h = du/dr ,  i, = dr /d r ,  Is ,  Saffman's force; 

C, coefficient in the formula for Saffman's force; r / -  yRed~; A = vrRedlf 2 ; a~ = 3.082/(b"Red)t/2; Rev = c~Vr/v; Rek 
2 ~ 2 2~2 = (c~ /v)OUg/OY; A = Rev /Rek  ; Red = U~D/v; Vr = ((Ug-Up) +V~) . Indices: g refers to gas parameters, p 

refers to the parameters of particles, 0, at the time moment t -- 0; S, Saffman's force; k, Reynolds number based 

on the velocity gradient, v, based on velocity; r, relative velocity; x, projection on the x axis. 
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